Name:

1. Given $\mathrm{GH}=3 \mathrm{x}-2, \mathrm{HI}=7 \mathrm{x}-4$, and $\mathrm{GI}=8 \mathrm{x}+10$, find x

2. Given $\mathrm{m} \angle \mathrm{CED}=20^{\circ}, \mathrm{m} \angle \mathrm{ABE}=\mathrm{m} \angle \mathrm{BEC}$ and $\mathrm{m} \angle \mathrm{AED}=140^{\circ}$, Find $\mathrm{m} \angle \mathrm{BEC}$

3. Which diagram shows the construction of the perpendicular bisector of $\overline{A B}$?
1)
2)

3)

4)

2. Given $\mathrm{m} \angle \mathrm{RZS}=25^{\circ}$ and $\mathrm{m} \angle \mathrm{SZT}=85^{\circ}$

Find $m \angle$ RZT

4. Find the distance between each pair of points using the number line below:

a. $\mathrm{BC}=$ \qquad
b. $\mathrm{DF}=$ \qquad
c. $\mathrm{GF}=$ \qquad
6.

You are asked to construct a segment congruent to $\overline{A B}$. As a first step, you draw a ray. Which of the following, if true of the ray, would be most helpful? (A) The ray is drawn on the paper shorter than $\overline{A B}$.
(B) The ray is drawn on the paper longer than $\overline{A B}$.
(C) The ray is drawn parallel to $\overline{A B}$.
(D) The ray is drawn perpendicular to $\overline{A B}$.
7. Find the midpoint between the endpoints
$(1,8)$ and $(9,4)$
8. Find the midpoint between the endpoints $(-7,-5)$ and $(3,-4)$
9. Find the value of x in the right triangle. Show your work.

12
10. Find the distance between the points
$(3,-8)$ and $(-1,-5)$
12. Use inductive reasoning to find the next two numbers in the pattern:
$22,20,17,13$, \qquad ,
11. Find the distance between the points $(8,-2)$ and $(3,2)$
13. Use inductive reasoning to draw the next two shapes in the pattern:

14. What conjecture can you make about the product (multiply) of two negative numbers?

Give two examples to support your conjecture.
15. Give a counterexample to show the conjecture is false.

Multiplying any number by 2 results in a larger number.

Counterexample: \qquad

Review

17. Solve for x

$$
3^{x+2}=81^{x-1}
$$

19. Set up an exponential equation in the form $y=a(b)^{x}$ for each situation:
a. Initial value $=250$ with a decay rate of 13%
\qquad
b. Initial value $=4000$ with a growth rate of 5%
20. Give a counterexample to show the conjecture is false.

All 50 states border at least one other state.

Counterexample: \qquad
18. Sketch a graph of $f(x)=6\left(\frac{1}{2}\right)^{x}$
showing the y-intercept, one other point, and any asymptotes

20. Find an explicit and recursive formula for the geometric sequence: $2,12,72,432, \ldots$

$$
\begin{array}{ll}
\text { Explicit: } & a_{n}= \\
\text { Recursive: } & a_{1}= \\
& a_{n}= \\
\hline
\end{array}
$$

